

上海茁彩生物科技有限公司

Shanghai zcibio technology Co., Ltd.

生化检测原理示意图

货号: ZC-S0534 规格: 100管/96样

磷酸烯醇式丙酮酸羧激酶(PEPCK)测试盒说明书

微量法

正式测定前务必取2-3个预期差异较大的样本做预测定

测定意义:

PEPCK (EC 4.1.1.32) 广泛存在于动物、植物、微生物和细胞中, 催化草酰乙酸转化为磷酸烯醇式丙酮酸, 是调节糖异生途径的关键酶。

测定原理:

PEPCK催化草酰乙酸生成磷酸烯醇式丙酮酸和 CO_2 , 丙酮酸激酶和乳酸脱氢酶进一步依次催化NADH氧化生成NAD⁺, 在340nm下测定NADH下降速率,即可反映PEPCK活性。

需自备的仪器和用品:

分光光度计/酶标仪、台式离心机、可调式移液器、微量石英比色皿/96孔板(UV板)、研钵、冰和蒸馏水。

试剂的组成和配制:

种类	试剂规格	储存条件	使用方法及注意事项
提取液	100mL×1 瓶	4℃保存	-
试剂一	液体 18 mL×1 瓶	4℃保存	
试剂二	液体×1 支	4℃保存	-
试剂三	粉剂×1 支	-20℃保存	_
试剂四	粉剂×1 支	-20℃保存	-

样本的前处理:

- 1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(10⁴个): 提取液体积(mL)为500~1000:1的比例(建议500万细菌或细胞加入1mL提取液),超声波破碎细菌 或细胞(冰浴,功率20%或200W,超声3s,间隔10s,重复30次);8000g 4℃离心10min,取上清, 置冰上待测。
- 2、组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL提取液),进行冰浴匀浆。8000g 4℃离心10min,取上清,置冰上待测。
- 3、血清(浆)样品:直接检测。

测定步骤:

- 1、分光光度计或酶标仪预热30min以上,调节波长至340nm.蒸馏水调零。
- 2、工作液的配制: 临用前将试剂二和试剂三转移到试剂一中混合溶解待用: 现配现用:
- 3、试剂四的配制:临用前加入1mL蒸馏水充分溶解待用;现配现用;
- 4、将工作液和试剂四置于37℃(哺乳动物)或25℃(其它物种)预热5分钟。
- 5、在微量石英比色皿或96孔板(UV板)中加入10 μ L样本、10 μ L试剂四和180 μ L工作液,立即混匀,记录340nm处初始吸光值A1和1min后的吸光值A2.计算 Δ A=A1-A2。

注意:在该试剂盒中,若 ΔA 大于0.1,需将样本用提取液稀释适当倍数后测定,使 ΔA 小于0.1可提高检测灵敏度。计算公式中乘以相应稀释倍数。

PEPCK 活性计算:

- a. 用微量石英比色皿测定的计算公式如下
- 1、血清(浆)PEPCK活力计算

单位定义: 每毫升血清(浆)每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/mL))=[ΔΑ×V 反总÷(ε×d)×10°]÷V 样÷T=3215×ΔΑ

- 2、组织、细菌或细胞中 PEPCK 活力计算
- (1) 按样本蛋白浓度计算

单位定义: 每mg组织蛋白每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/mg prot)=[$\Delta A \times V$ 反总÷(ε ×d)×10°]÷(V样×Cpr)÷T =3215× ΔA ÷Cpr

(2) 按样本鲜重计算

单位定义:每g组织每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/g 鲜重)=[$\Delta A \times V$ 反总÷(ε $\times d$) $\times 10^{\circ}$]÷(W $\times V$ 样÷V 样总)÷T =3215 $\times \Delta A$ ÷W

(3) 按细菌或细胞密度计算:

单位定义:每1万个细胞每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/10 4 cell)=[$\Delta A \times V$ 反总÷($\epsilon \times d$)×10 9]÷(500×V样÷V样总)÷T=6.43× ΔA

V 反总: 反应体系总体积, 2×10⁻⁴L; ε: NADH摩尔消光系数, 6.22×10³L/mol/cm; d: 比色皿光径, 1cm; V 样: 加入样本体积, 0.01 mL; V 样总: 加入提取液体积, 1mL; T: 反应时间, 1 min; Cpr: 样本蛋白质浓度, mg/mL; W: 样本质量, g; 500: 细菌或细胞总数, 500 万。

- b. 用 96 孔板(UV板)测定的计算公式如下
- 1、血清(浆)PEPCK 活力计算

单位定义: 每毫升血清(浆)每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/mL))=[ΔΑ×V 反总÷(ε×d)×10°]÷V 样÷T=6430×ΔΑ

- 2、组织、细菌或细胞中 PEPCK 活力计算
- (1) 按样本蛋白浓度计算

单位定义: 每mg组织蛋白每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK (nmol/min/mg prot) = [$\Delta A \times V$ 反总÷(ε × d)×10°]÷(V 样×Cpr)÷T =6430× ΔA ÷Cpr

(2) 按样本鲜重计算

单位定义:每g组织每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/g 鲜重)=[$\Delta A \times V$ 反总÷(ε × d)×10°]÷(W × V 样÷ V 样总)÷T =6430× $\Delta A \div W$

(3) 按细菌或细胞密度计算:

单位定义:每1万个细胞每分钟消耗1nmol NADH定义为一个酶活力单位。

PEPCK(nmol/min/10⁴cell)=[$\Delta A \times V$ 反总÷($\epsilon \times d$) $\times 10^{9}$]÷(500 $\times V$ 样÷V样总)÷T=12.86 $\times \Delta A$ V 反总: 反应体系总体积,2 $\times 10^{-4}$ L; ϵ : NADH 摩尔消光系数,6.22 $\times 10^{3}$ L/mol/cm; d: 96 孔板光径,0.5cm; V 样: 加入样本体积,0.01 mL; V 样总: 加入提取液体积,1mL; T: 反应时间,1 min; Cpr: 样本蛋白质浓度,mg/mL; W: 样本质量,g; 500: 细菌或细胞总数,500 万。