

# 上海茁彩生物科技有限公司 ZCIBIO Technology Co., Ltd



生化检测原理示意图







Cat. NO: ZC-S0576 Size: 50T/24S

# 辅酶 | NAD(H)含量检测试剂盒说明书

# 可见分光光度法

\*正式测定前务必取 2-3 个预期差异较大的样本做预测定

#### 一、测定意义:

辅酶 I 包括还原型和氧化型两种形式,在生物氧化中起传递氢的作用。氧化型辅酶 I 又称烟酰胺腺嘌呤二核苷酸 (NAD<sup>+</sup>) 是脱氢酶的辅酶,它在糖酵解,糖异生,三羧酸循环和呼吸链中发挥着不可替代的作用。中间产物会将脱下的氢递给 NAD,使之成为 NADH (还原型辅酶 I)。而NADH 则会作为氢的载体,在呼吸链中通过化学渗透偶联的方式,合成 ATP。NAD (H) 在机体内有重要的生理意义,与物质代谢、能量代谢、抗细胞衰老、抗氧化以及一些疾病的发生密切相关。体内辅酶 I 含量降低会导致细胞损伤或衰亡。

#### 二、测定原理:

分别用酸性和碱性提取液提取样品中 NAD<sup>+</sup>和 NADH, NADH 通过 PMS 的递氢作用,还原氧化型噻唑蓝(MTT)为甲瓒,在 570 nm 下检测吸光值, NAD<sup>+</sup>可被乙醇脱氢酶还原为 NADH,进一步采用 MTT 还原法检测。

#### 三、需自备的仪器和用品:

可见分光光度计、台式离心机、移液器、1mL 玻璃比色皿、研钵/匀浆器、冰和蒸馏水。







# 四、试剂的组成和配置:

| 种类                   | 试剂规格        | 储存条件    | 使用方法及注意事项                                                              |
|----------------------|-------------|---------|------------------------------------------------------------------------|
| 酸性提取液                | 15mL×1 瓶    | 4°C保存   | -                                                                      |
| 碱性提取液                | 15mL×1 瓶    | 4℃保存    | _                                                                      |
| 试剂一                  | 液体 20mL×1 瓶 | 4℃保存    | -                                                                      |
| 试剂二                  | 液体 6mL×1 瓶  | 4℃保存    | -                                                                      |
| 试剂三                  | 粉剂×1 瓶      | -20℃保存  | 用时加入 6.1mL双蒸水,混匀,4℃保存一周                                                |
| 试剂四                  | 粉剂×1 瓶      | 4 ℃保存   | 用时加入 6.6mL 双蒸水,混匀,4℃保存一周                                               |
| 试剂五                  | 液体 3mL×1 瓶  | 4 °C保存  | -                                                                      |
| 试剂六                  | 液体 40mL×1 瓶 | 4 ℃保存   | -                                                                      |
| 试剂七                  | 自备          | -       | 将 72mL 乙醇和 3mL 蒸馏水充分混合备用                                               |
| NAD <sup>+</sup> 标准品 | 粉剂×1 支      | -20℃保存  | 临用前加入1.5mL 蒸馏水, 即 2μmol/mL, 将<br>其稀释为 1.25nmol/mL 的NAD 标准溶液备<br>用。     |
| NADH 标准品             | 粉剂×1 支      | -20°C保存 | 临用前加入 1. 4mL 蒸馏水, 即 2μmol/mL, 将<br>其稀释为 1. 25nmol/mL 的NADH 标准溶液备<br>用。 |



#### 五、操作步骤:

#### 1、NAD+和 NADH 的提取:

#### (1) 血清(浆)中 NAD+和 NADH 的提取:

NAD<sup>+</sup>的提取:取 0.1mL 血清(浆),加入 0.5mL 酸性提取液,煮沸 5min (盖紧,以防止水分散失),冰浴冷却后,10000g  $4^{\circ}$ C离心 10min;取上清 200 $\mu$ L,加入等体积碱性提取液;混匀,10000g  $4^{\circ}$ C离心 10min,取上清,冰上保存待测。

NADH 的提取: 取 0.1 mL 血清(浆), 加入 0.5 mL 碱性提取液, 煮沸 5 min(盖紧, 以防止水分散失), 冰浴冷却后, 10000g  $4^{\circ}$ C离心 10 min, 取上清 200  $\mu$ L, 加入等体积酸性提取液; 混匀, 10000g  $4^{\circ}$ C离心 10 min, 取上清, 冰上保存待测。

#### (2) 组织中 NAD+和 NADH 的提取:

NAD<sup>+</sup>的提取: 称取约 0.1g 组织, 加入 0.5mL 酸性提取液, 冰浴研磨, 煮沸 5min(盖紧, 以防止水分散失), 冰浴冷却后, 10000g  $4^{\circ}$ C离心 10min, 取上清 200 $\mu$ L, 加入等体积碱性提取液混匀, 10000g  $4^{\circ}$ C离心 10min, 取上清,冰上保存待测。

NADH 的提取: 称取约 0.1g 组织, 加入 0.5mL 碱性提取液, 冰浴研磨, 煮沸 5min(盖紧, 以防止水分散失), 冰浴冷却后, 10000g  $4^{\circ}$ C离心 10min, 取上清 200 $\mu$ L, 加入等体积酸性提取液混匀, 10000g  $4^{\circ}$ C离心 10min, 取上清,冰上保存待测。

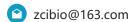
#### (3) 细胞或细菌中 NAD+和 NADH 的提取:

NAD<sup>+</sup>的提取: 收集 500 万细胞或细菌, 加入 0.5mL 酸性提取液, 超声波破碎 1min(强度 20%或200W, 超声 2s, 停 1s),煮沸 5min(盖紧,以防止水分散失),冰浴中冷却后,10000g 4  $^{\circ}$ C 离心 10min, 取上清液 200uL 至另一新的离心管中, 加入等体积的碱性提取液使之中和, 混匀,10000g 4  $^{\circ}$ C 离心 10min, 取上清, 冰上保存待测。

NADH 的提取: 收集 500 万细胞或细菌, 加入 0.5mL 碱性提取液, 超声波破碎 1min (强度 20% 或200W, 超声 2s, 停 1s) ,煮沸 5min (盖紧, 以防止水分散失),冰浴中冷却后, 10000g 4  $^{\circ}$ C 离心 10min, 取上清液 200uL 至另一新的离心管中, 加入等体积的酸性提取液使之中和, 混匀, 10000g 4  $^{\circ}$ C 离心 10min, 取上清, 冰上保存待测。








### 2. 测定步骤:

- 1、 分光光度计预热 30 分钟以上, 调节波长至 570nm, 蒸馏水调零。
- 2、 操作表 (在 1.5mL 棕色 EP 管中按下表依次加样)

| 试剂名称                                           | 对照管(μL) | 测定管(μL) | NAD 或 NADH 标<br>准管 | 空白管  |  |  |  |
|------------------------------------------------|---------|---------|--------------------|------|--|--|--|
| 上清液                                            | 50 50   |         | -                  | -    |  |  |  |
| 标准溶液                                           | -       | -       | 50                 | -    |  |  |  |
| 蒸馏水                                            |         |         |                    | 50   |  |  |  |
| 试剂六                                            | 500     | 500 –   |                    | -    |  |  |  |
| 试剂一                                            | 250     | 250 250 |                    | 250  |  |  |  |
| 试剂二                                            | 75      | 75      | 75                 | 75   |  |  |  |
| 试剂三                                            | 75      | 75      | 75                 | 75   |  |  |  |
| 试剂四                                            | 75      | 75      | 75                 | 75   |  |  |  |
| 试剂五                                            | 35      | 35      | 35                 | 35   |  |  |  |
| 充分混匀, 室温避光静置 20min                             |         |         |                    |      |  |  |  |
| 试剂六                                            | -       | 500     | 500                | 500  |  |  |  |
| 充分混匀,静置 5min 后,15000rpm,25℃离心 15min,弃上清,沉淀中加入: |         |         |                    |      |  |  |  |
| 试剂七                                            | 1000    | 1000    | 1000               | 1000 |  |  |  |

混匀, 570nm 下比色,读取吸光值 $\Delta A$  测定=A 测定管-A 对照管,NAD 标准管的记为  $\Delta A$  标准 1=A 标准管 1-A 空白管。 NADH 标准管的记为 $\Delta A$  标准 2=A 标准管 2-A 空白管。 空白管只需做一到两次。







#### 六、注意事项:

- 1、操作过程应避光。不可将试剂一、二、三和四混合后再加,必须分开加。
- 2、反应过程要注意避光。
- 3、当吸光值大于 1 时,建议稀释后测量,计算公式中应当乘以稀释倍数。

## 七、NAD<sup>+</sup>含量的计算

1、血清(浆)中 NAD+含量计算

NAD<sup>+</sup>含量 (nmo I/mL) = $\Delta$ A 测定÷ ( $\Delta$ A 标准 1÷C 标) ×V 提取÷V 血清 =12.5× $\Delta$ A 测定÷ $\Delta$ A 标准 1

- 2、组织、细菌、细胞中 NAD+含量计算
- (1) 按样本蛋白浓度计算

NAD<sup>+</sup> (nmoI/mg prot) =ΔA 测定÷ (ΔA 标准1÷C 标) ×V 提取÷ (V 提取×Cpr) = 1.25×ΔA 测定÷ΔA 标准1 ÷ Cpr

(2) 按样本鲜重计算

NAD+  $(nmo\ I/g\ 鲜重) = \Delta A$  测定÷  $(\Delta A\ 标准\ 1 \div C\ 标) \times V$  提取÷W =  $1.25 \times \Delta A$  测定÷  $\Delta A\ 标准\ 1 \div W$ 

(3) 按细菌或细胞密度计算

NAD+  $(nmol/10^4 cell) = \Delta A$  测定÷  $(\Delta A$  标准 1÷C 标) $\times V$  提取÷500 = 0.0025 $\times \Delta A$  测定÷ $\Delta A$  标准 1

NADH 含量的计算

1、血清(浆)中 NADH 含量计算

NADH 含量(nmol/mL) =△A 测定÷ (△A 标准 2÷C 标) ×V 提取÷V 血清









#### =12.5×ΔA 测定÷ΔA 标准 2

- 2、组织中 NADH 含量计算
  - (1) 按样本蛋白浓度计算

NADH (nmol/mg prot) =△A 测定÷ (△A 标准2÷C 标) ×V 提取÷ (V 样品×Cpr)

- = 1.25×ΔA 测定÷ΔA 标准2÷ Cpr
  - (2) 按样本鲜重计算

NADH (nmol/g 鲜重) =ΔA 测定÷ (ΔA 标准2÷C 标) ×V 提取÷W

- =1. 25×ΔA 测定÷ΔA 标准 2÷W
- (3) 按细菌或细胞密度计算

NADH (nmol/10<sup>4</sup>cell) =ΔA 测定÷ (ΔA 标准2÷C 标) ×V 提取÷500

=0.0025×ΔA 测定÷ΔA 标准 2

C 标: NAD 或NADH 标准溶液的浓度, 1.25nmol/mL; Cpr:蛋白浓度, mg/mL; V 提取: 加入提取液总体积, 1mL; V 血清: 提取时加入的血清体积, 0.1mL; W: 样本鲜重, g; 500:500 万个细胞。

