

上海茁彩生物科技有限公司 ZCIBIO Technology Co., Ltd

生化检测原理示意图

Cat. NO: ZC-S0488 Size: 100T/48S

乳酸含量 (LA) 检测试剂盒说明书

微量法

*正式测定前务必取 2-3 个预期差异较大的样本做预测定

一、测定意义:

乳酸是生物体代谢过程中重要的中间产物,与糖代谢、脂类代谢、蛋白质代谢及细胞内能量代谢密切相关,乳酸含量是评估糖元代谢的和有氧代谢的重要指标。

二、测定原理:

乳酸在乳酸脱氢酶的作用下生成丙酮酸, 同时使 NAD[†]还原生成 NADH 和 H[†], H[†]传递给 PMS 生成的 PMSH2 还原特异性底物, 在 450nm 处有特征吸收峰。

三、需自备的仪器和用品:

天平、研钵/匀浆器、离心机、可见分光光度计/酶标仪、微量玻璃比色皿/96 孔板、恒温水浴锅、乙醇和蒸馏水。

四、试剂的组成和配置:

种类	试剂规格	储存条件	使用方法及注意事项	
提取液	液体 50mL×1 瓶	4℃保存		
试剂一	液体 20mL×1 瓶	4℃保存		
试剂二	粉剂×1 瓶	-20℃保存	临用前加入 0.6ml 试剂一充分溶解。可分装后-20℃保存, 避免反复冻融。	
试剂三	粉剂×1 瓶	-20℃避光保存	临用前加入 6mL 试剂一充分溶解; 可分装后-20℃保存, 避免反复冻融。	
试剂四	粉剂×1 瓶	-20°C避光保存	临用前每瓶加入 6mL 试剂一混匀, 可分装后-20℃保存, 避免反复冻融。	
试剂五	液体 3mL×1 瓶	4℃保存		
标准品	粉剂×1 支	4℃保存	临用前加入 1.04mL 提取液配成 100μmol/mL 的标准溶液	

工作液配制:临用前根据用量按照试剂三(V):试剂四(V):试剂五(V)=1:1:0.5的比例充分混匀,现配现用。

五、操作步骤:

● 样本处理:

- (1)组织:按照质量(g):提取液一体积(mL)为 1:5~10 的比例(建议称取约 0.1g,加入 1mL 提取液)加入提取液,冰浴匀浆后于 4° C,12000g 离心 10min 后取上清待测。
- (2) 细胞:按照细胞数量(10^6 个):提取液一体积(mL)为 $500^{\sim}1000$: 1 的比例(建议 500 万细胞加入 1mL 提取液),冰浴超声波破碎细胞(功率 300w,超声 3 秒,间隔 7 秒,总时间 3min);于 4° C, 12000g 离心 10min 后取上清待测。
- (3) 血清(浆): 取 100μL 血清(浆) 加入 0.9mL 提取液, 4°C12000g 离心 10min 后取上清待测。

● 测定操作

- 1、分光光度计/酶标仪预热 30min,波长调至 450nm,分光光度计用蒸馏水调零。
- 2、标准液的稀释: 将 100 μmo I/mL 的标准溶液用蒸馏水稀释为 10、5、2.5、1.25、0.625、
- 0.3125、0μmo I/mL 的标准溶液待测。

3、加样表:

	测定管	对照管	标准管	空白管
样品(μL)	10	10	-	-
标准品(μL)	-	-	10	-
蒸馏水(μL)	-	10	-	10
试剂一(μL)	40	40	40	40
试剂二(μL)	10	-	10	10
工作液(μL)	140	140	140	140

于 37°C准确反应 20min。于 450nm 处测定吸光值,分别记为 A 测定管,A 对照管,A 标准管, A 空白管, 计算ΔA 测定=A 测定管-A 对照管; ΔA 标准= A 标准管-A 空白管。

六、乳酸含量的计算:

1、标准曲线的绘制

以各标准溶液浓度为 x 轴,以其对应的吸光值(ΔA 标准)为 y 轴,绘制标准曲线,得到标准方程 y=kx+b,将 ΔA 测定带入公式中得到 x ($\mu mo 1/mL$)。

2、乳酸含量计算

(1) 按照蛋白含量计算

LA 含量(μmol/mg prot)=x×V 样÷V 样÷Cpr=x÷Cpr。

(2) 按照样本质量计算

LA 含量 (μmol/g 鲜重) = x×V 样÷ (V 样÷V 样总×W) =x÷W。

(3) 按照细胞数量计算

LA 含量(μ mol/ 10^6 cell)= $x \times V$ 样÷ (V 样÷V 样总×细胞数量)=x÷细胞数量。

(4) 按照液体体积计算

LA 含量(µmol/mL)= 10×x。

V样品: 加入的样品体积, 0.01mL。: W: 样本质量, g/mL; Cpr: 样本蛋白质浓度, mg/mL,蛋白浓度需自行测定; V 提取液: 加入的提取液体积, 1mL; 5: 细胞数量, 5×10^6 个; V 液体: 液体样本体积 0.1mL。

七、注意事项:

- 1. 若测定吸光值ΔA 大于最大浓度标准品 OD 值,请将样品体积进行适当的稀释后再进行测定,并在计算公式中乘以稀释倍数。
- 2. 本试剂盒采用 WST-8 法检测原理,不同于 NBT 法,且具有无毒无害,显色底物溶解性好,显色稳定等优点,深受广大科研工作者的青睐。

